Evolution of residual stress during fatigue crack growth in an aluminium specimen with a bonded crack retarder

Abdul Khadar Syed1 a *, Michael E Fitzpatrick1,2 b, James E Moffatt1 c

1. Materials Engineering, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

2 Now at: Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry CV1 5FB, UK

aAbdul.Syed@open.ac.uk, bMichael.Fitzpatrick@coventry.ac.uk, cJim.Moffatt@open.ac.uk

Abstract

The application of bonded crack retarders in critical aircraft integral structures has been of great interest recently for the improvement of damage tolerance. One potential disadvantage of bonded crack retarders is that the thermal residual stresses which are developed during the strap bonding process are detrimental to the performance of the structure. This investigation explores the distribution of thermal residual stresses developed in an aluminium substrate reinforced with GLARE (glass-fibre-reinforced epoxy) straps, and the evolution of stresses during fatigue crack growth. Residual stress measurements were performed using neutron diffraction. The results show that tensile residual stresses are developed in the aluminium substrate as a consequence of the strap bonding process. \textit{In situ} residual stress measurements during constant amplitude fatigue crack growth were performed and it was observed that the growth of the fatigue crack altered the initial residual stresses.
Keywords: Bonded crack retarders, Fatigue cracking, GLARE, Residual stress, neutron diffraction

1. Introduction

The demand for commercial air travel has significantly increased in recent decades. There has been a strong drive for increased design life and reduced operating costs for aircraft, and various technologies have been developed and deployed to this end. Major aspects in cost reduction include increasing fuel efficiency, reducing weight, and by reducing the operating or maintenance costs of the aircraft. Of these, weight reduction and maintenance cost are the priority factors. Aircraft are made of assemblies of various parts with numerous structural joints. The joints are typically riveted and bolted, and they require regular inspection and maintenance. Joints are fatigue critical locations during service, and add weight to the structure. One promising solution is to replace them by so-called “integral” structures based on machining (and possibly welding), which substantially reduce the weight, production cost and maintenance cost of the aircraft by reducing the number of joints.

The major problem associated with integral structures is that they lack the natural crack stopping features that are present in riveted and bolted joint structures. One solution is to incorporate specially-designed crack retarding features. Such features require low weight so as not to remove the weight savings associated with the integral structure, as well as fatigue resistance, damage tolerance and low maintenance requirements. Candidate materials need extensive research to ensure safety, structural integrity and damage tolerance of the aircraft [1, 2].

Glass Laminated Aluminium Reinforced Epoxy (GLARE) fibre metal laminates have been developed in recent years, combining the superior properties of both metallic
and fibre structures and offering lower density, higher strength and damage tolerance with much greater fatigue crack resistance than conventional aluminium alloys [3]. GLARE consists of alternate layers of aluminium sheet and glass reinforced epoxy. The orientation of the glass fibres in the adhesive can be varied according to the desired application. The high damage tolerance of GLARE is attributed to the aluminium whereas the high strength of GLARE laminates is derived from the strength of the glass fibres. The resistance to the initiation of fatigue cracks is controlled by the resistance of the aluminum sheet, while the resistance to the growth of the fatigue cracks is attributed to the bridging effect of the fibers and to some extent the controlled debonding at the epoxy-aluminum sheet interface. Furthermore, blunt notch strength, impact, corrosion and flame resistance of GLARE are superior to conventional aluminium alloys [4-10].

Aircraft must be designed to continue in service even after the accumulation of damage within the structure by fatigue or other failure mechanisms. Design features such as multiple load paths and bonded crack retarders are an integral part of safe, damage-tolerant design [2, 11, 12]. There has been considerable research on the usage of composite patches as bonded crack retarders in aircraft structural repairs and these have proven effective in increasing the service life of the structure [13-17].

The principle of a bonded crack retarder is to adhesively fix a stiffening strap to critical structural locations. The local increase in stiffness reduces the local driving force for crack growth by reducing the stress in the substrate. Extensive research performed on different strap materials shows GLARE as the most promising material to improve the fatigue life. The major disadvantage of bonded crack retarders is the generation of thermal residual stresses generated during the high-temperature adhesive curing in the strap bonding process, owing to coefficient of thermal expansion mismatch.
between the strap and substrate [18-23]. Induced thermal residual stresses may cause an adverse effect on the mechanical performance of the reinforced structure. Furthermore, single sided reinforcing can also result in out-of-plane distortion of the structure which may have significant effect on the mechanical performance [20, 23]. Hence the primary objective of this investigation is to study the out-of-plane distortion and residual stresses developed in a single-sided reinforced specimen, and the evolution of the residual stress during subsequent fatigue crack growth.

2. Experimental details

2.1 Materials

Table 1 shows the mechanical properties of materials used in this investigation. The test geometry was a middle-crack tension (M(T)) specimen made from aluminium alloy 2624-T351, 400 mm long, 140 mm wide and 5 mm thick. Before bonding the straps, a crack-starter notch of 20 mm was made using electro-discharge machining (EDM). GLARE 2–6/5 (0.4) was chosen for the reinforcing straps, which consists of six layers of aluminium alloy sheets and five double layers of unidirectional glass fibres reinforced in epoxy. The specimen was prepared at Cranfield University. The assembly was bonded using FM94® adhesive supplied by Cytec Ltd. The curing temperature of FM94 was 120 °C. After cure the specimens were inspected using an ultrasonic phased array C-scan to confirm the bond quality.

The specimen was prepared with a global stiffness ratio (μ) of 0.2, defined as:

$$\mu = \frac{\sum(E_{\text{strap}} \cdot A_{\text{strap}})}{(E_{\text{Al}} \cdot A_{\text{Al}}) + \sum(E_{\text{strap}} \cdot A_{\text{strap}})}$$ \hspace{1cm} \text{Equation (1)}
where E_{strap}, E_{Al} and A_{strap}, A_{Al} correspond to the elastic modulus and total cross-sectional areas of the straps and the aluminium substrate respectively. The dimensions of the straps were 180 mm long, 25.83 mm wide and 3.7 mm thick. The front edge of each strap was placed at 3.5 mm from the edge of the EDM notch: thus the distance between the front edge of the strap and the centre of the substrate was 13.5 mm. Figure 1 shows the geometrical details of the specimen used in this investigation. The direction along the longest dimension is hereafter referred to as the longitudinal direction (X), the direction across the width dimension is referred to as the transverse direction (Y), and the distance through the thickness is referred to as the normal direction (Z), as shown in figure 1.

2.2 Experimental methods

Prior to residual stress measurements and after specimen preparation an out-of-plane deflection was observed in the specimen. This is a consequence of the single-sided strap bonding, and it occurs because of the difference in coefficient of thermal expansion between the substrate and the strap. This deflection may have a detrimental effect on the fatigue and delamination behaviour of the specimen, and therefore it was important to quantify it. Deflection measurements were performed using a laser co-ordinate measurement machine on the un-reinforced side along the longitudinal direction, with a measurement pitch of 1 mm.

Residual stress measurements were performed using neutron diffraction. Neutron diffraction is a well-established non-destructive technique to determine lattice strain in a crystalline material. Neutron diffraction works on the principle of Bragg’s law (equation 2) which explains the relationship between the wavelength of the scattering neutrons λ and lattice spacing d_{hkl} of atomic planes described by Miller indices (hkl), and the
corresponding diffraction angle $2\theta_{hkl}$ [24]. If both interplanar distances of stressed (d_{hkl}) and unstressed or stress-free (d_0) material are known, strain in a particular direction can be computed by using equation 3 and thereby the stress in particular direction using Hooke’s law.

$$n\lambda = 2d_{hkl} \sin \theta_{hkl}$$ \hspace{1cm} \text{Equation (2)}

$$\varepsilon(x, y, z) = \frac{d(x, y, z) - d_0}{d_0}$$ \hspace{1cm} \text{Equation (3)}

where ε represents strain, and $d(x, y, z)$ represents the inter-planar distance in the bonded sample.

Residual stress measurements were performed at ENGIN-X at the UK’s ISIS neutron source, which is a time of flight (TOF) diffractometer where multiple reflections can be measured. Figure 2 shows the experimental setup for residual stress measurements at ENGIN-X. ENGIN-X Script Based Analysis (EX-SBA) was used for the data analysis where Pawley refinement was used to determine the lattice parameters: this has been shown to yield a good approximation of the engineering strain in a material [25, 26]. A gauge volume, defined by the intersection of the incident and scattered beams of the neutrons, of $2 \times 2 \times 2 \text{ mm}^3$ was used for all the measurements. As the substrate is rolled in the longitudinal direction, texture and the anisotropic plasticity will be present which results in significant variation in the lattice parameters in all three directions (longitudinal, transverse and normal). Therefore the inter-planar distance in the stress-free sample had to be measured in all three directions. Stress-free reference measurements were performed at a point well outside of the bonded area close to an edge; these were used to provide the stress-free values in the computation of residual stresses.
All the residual stress measurements were performed in the substrate along the crack growth direction (y-direction) in two different thickness locations, $z = 1.5$ and $z = 3.5$ mm from the reinforced side as shown in figure 1. Measurements were performed at four crack lengths: 10, 17, 26.5 and 48 mm from the centre of the specimen (10 mm corresponds to the initial condition with a starter notch before a fatigue crack is grown. Owing to time constraints, measurements at the 48 mm crack length were made only at $z = 1.5$ mm.

Constant amplitude fatigue crack growth tests were performed on a 100 kN Instron servo-hydraulic test machine. The specimen was subjected to a maximum stress of 60 MPa at 10 Hz and with a load ratio of $R = 0.1$. Prior to fatigue tests the desired crack lengths were marked on the specimen using a Vernier height gauge with an accuracy of ± 0.01 mm. The crack length was monitored with a high resolution camera placed in front of the specimen and close to the growing crack as shown in figure 3. Tests were performed according to the ASTM E647 standard. The test procedure was performed in two phases: the first phase was to carry out pre-cracking of the sample and the second phase involves crack growth until specimen failure.

3. Results and discussion

Specimen out-of-plane deflection and thermal residual stresses arise due to the high-temperature adhesive curing and the asymmetric configuration of the single-sided bonding. Figure 4 shows the out-of-plane deflection resulting from the bonding process and it can be clearly seen that a deflection of approximately 0.9 mm was observed on the unreinforced side. Prior to fatigue crack growth testing baseline (zero crack length) residual stress measurements and stress-free lattice parameter measurements were performed in all three (assumed) principal directions at thickness locations of $z = 1.5$
and 3.5 mm (as shown in figure 1) from the reinforced side. During the in situ residual stress measurements care was taken to measure a point at the crack tip for each crack length in the three principal directions. As mentioned earlier, residual stress measurements were performed at different crack lengths and the number of cycles for each crack length were 86 000, 128 000 and 204 000 cycles for 17, 26.5 and 48 mm crack lengths respectively.

Figure 5 and figure 6 show the residual stress measurements at different crack lengths in the M(T) specimen at z = 1.5 and 3.5 mm respectively. Baseline measurements performed at two different thickness locations shows that residual stresses from the strap bonding process are tensile in nature and relatively low (~20 MPa) and there is little variation in the stresses across the specimen. Residual stresses at z = 1.5 after 17 mm crack growth show a peak tensile stress of about 40 MPa at the crack tip. As the crack progressed in the y-direction the peak stress also moves and can be observed at the crack tip for both 26.5 mm and 40 mm crack lengths. The compressive stresses behind the crack tip might be attributed to crack closure in the crack wake. The peak stress at the crack tip is higher in the longitudinal and transverse directions compared to the normal direction because the specimen is not constrained in this direction.

Residual stresses at z = 3.5 are shown in figure 6. There is a significant variation in the peak stress, which is lower when compared to the peak stress at z = 1.5. This is attributed to the stress relaxation at z = 3.5. Compressive stresses behind the crack tip can again be observed, which may be due to crack closure. The peak stresses at the crack tip are higher in the longitudinal and transverse directions compared to the normal direction.
Conclusions

1. The residual stresses associated with a single sided GLARE bonded crack retarder on an aluminium plate have been determined using neutron diffraction. The evolution of the residual stresses during fatigue crack growth has been measured, with the crack grown whilst the sample was in situ in the neutron beam.

2. The bonding of the GLARE strap resulted in an out-of-plane deflection of the substrate, as a consequence of the mismatch in coefficient of thermal expansion between the GLARE and the aluminium, and the fact that only single-sided reinforcement was used. This mimics the expected application in aerospace structures where double-sided bonding may be neither desirable nor practical.

3. The high temperature adhesive curing used to fix the strap resulted in the development of low residual stresses of ~20 MPa in the aluminium substrate. There is no significant variation in the residual stresses through the substrate thickness.

4. Fatigue crack growth resulted in peak tensile stresses at the crack tip and compressive residual stresses are observed behind the crack tip.

5. Fatigue crack growth resulted in significant variation in the residual stress across the specimen thickness, being higher close to the bonded strap side.

Acknowledgements

The authors gratefully acknowledge Dr Saurabh Kabra at ENGIN-X, ISIS for help during the neutron diffraction experiments. Abdul Khadar Syed is funded by a grant from the UK Technology Strategy Board, in collaboration with Cranfield University, Alcoa, and Airbus UK. Michael Fitzpatrick is funded by the Lloyd’s Register
Foundation (LRF), a UK registered charity and sole shareholder of Lloyd’s Register Group Ltd that invests in science, engineering and technology for public benefit, worldwide.

References:

Figure 1. Geometrical details of the M(T) specimen

Figure 2. Experimental setup for residual stress measurements at ENGIN-X. The neutrons travel from the slits out of the page towards the sample; the collimators capture the diffracted neutrons.
Figure 3. Experimental setup for the fatigue test at ENGIN-X

Figure 4. Out-of-plane deflection of M(T) specimen after bonding
Figure 5. Residual stress measurements on M(T) specimen at $z = 1.5$ mm (a) longitudinal (b) transverse and (c) normal direction.
Figure 6. Residual stress measurements on M(T) specimen at $z = 3.5$ mm (a) longitudinal (b) transverse and (c) normal direction
<table>
<thead>
<tr>
<th></th>
<th>Al 2624-T351</th>
<th>GLARE constituents</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al 2024-T3</td>
<td>FM94/S2-prepreg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_1 / GPa</td>
<td>73</td>
<td>72</td>
<td>50.3</td>
<td></td>
</tr>
<tr>
<td>E_2, E_3 / GPa</td>
<td>71</td>
<td>72</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>$v_{12} = v_{13}$</td>
<td>0.33</td>
<td>0.30</td>
<td>0.310</td>
<td></td>
</tr>
<tr>
<td>v_{21}</td>
<td>0.33</td>
<td>0.30</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>$\alpha_1 / ^\circ$C$^{-1}$</td>
<td>2.32×10^{-5}</td>
<td>2.32×10^{-5}</td>
<td>2.88×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>$\alpha_2 / ^\circ$C$^{-1}$</td>
<td>2.32×10^{-5}</td>
<td>2.32×10^{-5}</td>
<td>4.03×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>ρ kg m$^{-3}$</td>
<td>2770</td>
<td>2770</td>
<td>1972</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Mechanical properties of materials used in this investigation. $E =$ elastic modulus; $v =$ Poisson’s ratio; $\alpha =$ coefficient of thermal expansion; $\rho =$ density.