Skinfoold creep under load of caliper.
Linear visco-and poroelastic model simulations

Nowak, J. , Nowak, B. and Kaczmarek, M.

Author post-print (accepted) deposited in CURVE February 2016

Original citation & hyperlink:
http://dx.doi.org/10.5277/ABB-00128-2014-04

ISSN 1509-409X
DOI 10.5277/ABB-00128-2014-04

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Skinfold creep under load of caliper. Linear visco-and poroelastic model simulations

Joanna Nowak¹*, Bartosz Nowak², Mariusz Kaczmarek¹

¹Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University
Bydgoszcz, Poland
²Faculty of Civil Engineering, Bauhaus-Universität Weimar, Weimar, Germany

Abstract

Purpose: This paper refers to the diagnostic idea proposed in [11] to measure the parameter called rate of creep of axillary fold of tissue using modified Harpenden skinfold caliper in order to distinguish normal and edematous tissue. Our simulations are intended to help understanding the creep phenomenon and creep rate parameter as a sensitive indicator of edema existence. The parametric analysis shows the tissue behavior under the external load as well as its sensitivity to changes of crucial hydro-mechanical tissue parameters e.g. permeability or stiffness.

Methods: The linear viscoelastic and poroelastic models of normal (single phase) and oedematous tissue (two - phase: swelled tissue with excess of interstitial fluid) implemented in COMSOL Multiphysics environment are used. Simulations are performed within the range of small strains for a simplified fold geometry, material characterization and boundary conditions. The predicted creep is the result of viscosity (viscoelastic model) or pore fluid displacement (poroelastic model) in tissue.

Results: The tissue deformations, interstitial fluid pressure as well as interstitial fluid velocity are discussed in parametric analysis with respect to elasticity modulus, relaxation time or permeability of tissue. The creep rate determined within the considered models of tissue is compared and referred to the diagnostic idea in [11].

Conclusion: The results obtained from the two linear models of subcutaneous tissue indicate that the form of creep curve and the creep rate are sensitive to material parameters which characterize the tissue. However the adopted modelling assumptions point on a limited applicability of the creep rate as the discriminant of oedema.

Keywords: computer simulations, soft tissue, lymphoedema, viscoelasticity, poroelasticity, modeling