Reynolds Number Effects on Fully Developed Pulsed Jets Impinging on Flat Surfaces

Medina, H. , Benard, E. and Early, J. M.

Author post-print (accepted) deposited in CURVE January 2016

Original citation & hyperlink:
http://dx.doi.org/10.2514/1.J051203

ISSN 0001-1452
ESSN 1533-385X
DOI 10.2514/1.J051203

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Reynolds Number Effects on Fully-Developed Pulsed Jets Impinging on Flat Surfaces

H. Medina
Coventry University, Coventry, CV1 5FB, United Kingdom

E. Benard
Institut Supérieur de l'Aéronautique et de l'Espace, Toulouse, 31055, France

J.M. Early
The Queen’s University of Belfast, Belfast, BT9 5AH, United Kingdom

A systematic study of the effect of the Reynolds number on the fluid dynamics and turbulence statistics of pulsed jets impinging on a flat surface is presented. It has been suggested that the influence of Reynolds number may be somewhat different for a jet subjected to pulsation when compared to an equivalent steady jet. A comparative study of both steady and pulsating jets is presented for a Reynolds number range of $Re = 4730$ to $Re = 10,000$. All the other factors that affect the flow field are kept constant; $H/d = 3$, $St = 0.25$ and $d = 30.5mm$. It was found that for the range of Reynolds numbers tested, pulsation results in a shortening of the jet core, the centerline axial velocity component declines more rapidly, and higher values of the radial velocity component for $r/d > 0.75$ are observed, and as the Reynolds number increases, the jet spreads more rapidly, the turbulent kinetic energy and non-dimensional turbulent fluctuations decrease, and the flow field near the impinging surface changes drastically, evidenced with the development of a turbulent momentum exchange interaction away from the wall for $r/d > 1.5$.

1 Senior Lecturer, Faculty of Engineering and Computing, Coventry University
2 Senior Lecturer, SUPAERO, Institut Supérieur de l’Aéronautique et de l’Espace
3 Lecturer, The Queen’s University of Belfast
Nomenclature

\(A_N \) = Pulse amplitude, \(U_{\text{rms}}/U_{\text{avg}} \)
\(d \) = Nozzle diameter, m
\(H \) = Nozzle-to-plate spacing, m
\(K \) = Mean turbulent kinetic energy, \(m^2/s^2 \)
\(Re \) = Reynolds number, \(U_0d/\nu \)
\(r \) = Radial distance measured from the jet centerline, m
\(St \) = Strouhal number, \(fd/U_0 \)
\(T_{\text{avg}} \) = Average temperature \((T_1 + T_2)/2\), °C
\(T_r \) = Room temperature, °C
\(T_1 \) = Experiment start temperature, °C
\(T_2 \) = Experiment end temperature, °C
\(u, v \) = Instantaneous axial and radial velocity components, m/s
\(U_0 \) = Time-averaged centerline exit velocity, m/s
\(U, V \) = Mean axial and radial velocity components, m/s
\(U', V' \) = Mean axial and radial turbulent velocity components, m/s
\(x \) = Axial distance from nozzle exit, m
\(\delta_{1/2} \) = Jet half-width, \(r(x, U = U_0/2) \), m
\(\nu \) = Kinematic viscosity, \(m^2/s \)

I. Introduction

When the development of a free-jet flow is interrupted by the presence of a surface, an impinging jet is created. Impinging jets are characterized by a rapid deceleration of the discharged fluid as it reaches the surface which results in an exchange of momentum between the fluid and the impingement surface that leads to high rates of heat and mass transfer. Consequently, impinging jets have found a place in many industrial applications (for example, cooling of electronics and inner surfaces of turbine blades).
Due to the numerous practical applications of impinging jets, their study has been mainly focused on understanding their mass, momentum and heat transfer characteristics [1-4]. However, an understanding of the underlying fluid mechanics behind these types of jet also offers significant benefits to the study of free shear layers and boundary layers. Furthermore, from a numerical modeling perspective, the study of impinging jets can be incorporated into the development of turbulence models as most are tested on flows which are parallel to the wall and are therefore not equipped to deal with flows on which the streamlines change orientation and become perpendicular to the upstream flow. Even though efforts to improve computational models have been made, they are being held back by the lack of detailed experimental data [5] as a large quantity of the research on impinging jets is still directed towards understanding the heat transfer characteristics of impinging jets at high Reynolds numbers since they lead to the highest rates of heat transfer.

The study of impinging jets has been further complicated by the numerous configurations which are encountered, which has often led to contradictions in the observations made about their behavior, for instance, the value of the nozzle-to-plate spacing which leads to maximum heat transfer enhancement can be strongly affected by the upstream turbulence intensity as well as the type of nozzle employed [6]. There is also a possibility that the use of a pulsating rather than steady jet could enhance the heat transfer rates [7-9], but this has not been conclusively proven. Contradictory evidence exists which indicates that the pulsation has a detrimental effect on the heat transfer characteristics [7, 10, 11]. While these discrepancies in the heat transfer characteristics exist, there is in addition a fundamental lack of research on the velocity and turbulent fields of these jet structures. There are only a few works available that study the velocity field of impinging pulsed jets [12, 13], but the focus is still firmly on the heat transfer mechanism, with limited velocity data presented.

It is therefore evident that due to the large number of potential experimental configurations, and the contradictions observed throughout the literature for both steady and pulsating jets, there is a need for both a systematic approach to the study of impinging jets and an in-depth study of the flow field and fluid mechanics. This will not only serve as a basis to understanding how the velocity field might affect heat transfer, but also to provide data for turbulence model validation. The current paper presents the results of an experimental study conducted into the effects of pulsation
on the flow field of a turbulent impinging jet, examining the effects of varying the Reynolds number whilst keeping the non-dimensional frequency (Strouhal number) of the pulsation constant. Zumbrunnen [14] estimated analytically a useful boundary layer renewal Strouhal number of $St = 0.26$ for which heat transfer enhancement would be expected at the impingement surface. Therefore, it was considered reasonable to fix the Strouhal number to $St = 0.25$ as this frequency could lead to heat transfer enhancement. Although the preferred mode Strouhal number for axisymmetric jets has been reported as $St = 0.3$ [15], it is possible to find in the literature works for which heat transfer enhancement has been observed for pulsing frequencies as low as $St = 0.05$ [9]. The nozzle to plate spacing was fixed at $H/d = 3$ as it has been reported to be the minimum distance for observable heat transfer enhancement in pulsed jets [16], but it should be noted that heat transfer enhancement has also been observed for $H/d > 3$ [7]. Ultimately, $H/d = 3$ was chosen as the nominal nozzle-to-plate spacing as the best laser illumination was achieved in this configuration. Finally, the range of Reynolds numbers considered in this investigation ($3900 > Re > 10000$) was chosen for three main reasons: (i) the flow field and turbulent characteristics for impinging pulsed jets at $St = 0.25$ have not been reported before, (ii) there are limited studies that focus on the flow and turbulent characteristics, and (iii) it is a very challenging range in terms of the flow physics that can be observed even for steady jets (for instance the break down of and initially stable jet shear layer into turbulent eddies in the form of Kelvin-Helmholtz instabilities, as it will be seen later).

II. Experimental Setup and Procedure

A. Experimental Facility

The experiments were undertaken in a custom-built water facility. This facility operates on a recirculating principle and it relies on a gravity-fed mechanism to generate the jet. An overhead tank provides the required head, and the water passes through a pulsator (the valve remains fully opened for the steady jet experiments) and the nozzle inlet, before finally exiting at the test section into the main water tank. The excess water from the main tank is collected into a reservoir tank and is pumped back up to the overhead tank in order to maintain a constant water level in the head tank (necessary to keep a steady supply of water to the test section). A schematic of the
The test section is constructed as a rectangular glass tank (inner dimensions $605.6\,mm$ wide, $302.8\,mm$ tall and $300.8\,mm$ long), with a wall thickness of $2\,mm$ (capable of holding approximately 55 liters of water). Glass was a convenient material because it allows visual access to the test section.

In order to ensure a fully developed exit profile, a round nozzle ($d_{inner} = 30.5\,mm$) of 50 diameters in length was utilized. The first 40 diameters ($1,220\,mm$) consist of a straight PVC tube (to prevent rusting and ensure no degradation of the inner wall quality). However, for the last 10 diameters ($305\,mm$) of the nozzle a sleeve was used to ensure that the inner section of the nozzle remained circular.

A custom-built pulsator was used to provide the required control over the non-dimensional frequencies tested. The pulsator consists of a rotating valve, a reduction mechanism, and a driving motor. A PB100 (PN25) chromium-plated brass full bore valve (diameter $25\,mm$) was modified so that it could rotate 360 degrees, and therefore interrupt the flow of water (generating two pulses per revolution). The duty cycle was estimated to be approximately 50%. The rotating valve was
driven using a motor manufactured by ABB (model M2VA71B-2) rated at 0.55 \(kW \) of power. This 3 phase motor was controlled using a control unit also manufactured by ABB. Once a frequency was selected it was kept constant within \(\pm 0.1 \) \(Hz \). The maximum frequency at which the motor could be rotated was 47.5 \(Hz \), which translates to a maximum jet frequency of 2.8 \(Hz \) for the valve due to the presence of the reduction mechanism.

B. Data Acquisition

A high-speed PIV system was used in order to acquire time-resolved velocity data. This system is comprised of a laser head, a power supply unit, a chiller (used to cool the laser head), a high-speed camera and a PC. Both the laser head and the power supply unit are manufactured by Lightwave Electronics. The laser head consists of a Nd:YAG laser which produces pulses of a wavelength of 532 \(nm \) at a maximum power of 100 \(mW \). The system can be triggered internally and externally; if the system is triggered internally it can be operated at frequencies of up to 100 \(KHz \), externally, it can operate up to 16 \(KHz \). In order to maintain the highest possible camera resolution, a maximum operating frequency chosen was 500 \(Hz \). The camera used to capture the images was a HSS-2 HighSpeedStar Video Camera System (LaVision). This is a single frame CCD digital camera with a storage capacity of 1.28 \(GB \) (1022 images at highest resolution). It has a spatial resolution of 1280 pixels by 1024 pixels. The TTL trigger for the pulsed experiments was provided by an optical sensor (Monarch Instrument, Model ROS-5W) pointed at the rotating valve. This sensor is needed so that the images for the pulsed experiments can be taken at the same point in the cycle with an accuracy of 0.005\% of the measured frequency. Finally, the number of cycles for each experiment was determined via a series of convergence tests. However, no fewer than 40 cycles were recorded for any given experiment. This task was carried out in order to minimize data storage requirements. The total number of velocity fields available for each experimental configuration are detailed in table 4 on page 11.

1. Software and Calibration

The image acquisition and post-processing was performed using LaVision Davis 7.0. The calibration plate used was a \(80mm \times 80 mm \) laminated card, a white background with 225 black crosses.
The distance between cross centroids was 5 millimeters. The choice of interrogation window and post-processing was the same for all experiments. A multi-pass (2) decreasing window size algorithm with a 50% overlap was used. The initial interrogation window size was 128x128 pixels and the final window size was 32x32 pixels. Due to the use of window overlapping, the final spatial resolution is 16 pixels.

2. System Accuracy, Error and Experimental Uncertainty

With the aid of sub-pixel estimators used in Davis, the PIV system is capable of measuring displacements as small as 0.1 pixel. Therefore, the minimum resolved speed is a function of the camera magnification and the acquisition frequency. Based on the highest acquisition frequency and the largest field of view employed, the system accuracy is ±0.001 m/s. There are many factors that can lead to errors in the calculation of the velocity vectors. These include the choice of particle, out-of-plane motion, high displacement gradients, laser accuracy and peak-locking. By an appropriate selection of particles (size and density) most of the potential sources of errors can be eliminated or neglected. For the work presented, the diameter of the particles was a concern since it is smaller than 2 pixels, therefore increasing the chance of peak-locking, so anti-peak-locking algorithms were employed. Vectors were calculated using decreasing window sizes and overlapping, significantly reducing (or eliminating) the bias towards small particle displacements in areas with high velocity gradients. Consequently, it was determined that the main source of error in the velocity calculation originated from the calibration of the camera. The least accurate mapping function for the experiments carried out in this investigation gave a standard deviation of 0.2 pixel. For a 95% confidence level, interrogation windows could be located within ±0.4 pixel from its measured position. Therefore, for a final interrogation window of 32x32 pixels, the estimated error is ±1.25%.

Table 1 presents a summary of the estimated error for the various turbulent statistics presented in this work. The number of vector fields available for the estimation of the various turbulent quantities are shown in table 4. As already mentioned, the accuracy of the velocity measurements was calculated for the most limiting experiment carried out (highest Reynolds number). Assuming that the timing error between two consecutive image recordings is negligible, and based on a spatial
Experimental Quantity	Associated Error
instantaneous velocities \((u, v)\) | ±1.25%
mean velocities \((U, V)\) | ±1.25%
turbulent components \((U', V')\) | ±2.00%
velocity fluctuations \((U'_{rms}/U_0, V'_{rms}/U_0)\) | ±3.00%
Reynolds stresses \((U'V'/U_0^2)\) | ±4.50%
TKE \((K/U_0^2)\) | ±5.50%

Table 1 Error summary

accuracy of ±0.4 pixel, the system accuracy for velocity measurements is ±0.001 m/s or better. The error on the instantaneous and time-averaged velocity measurements was estimated at ±1.25%.

C. Data Analysis

Once the velocity data were extracted from the acquired images using Davis 7.0, further analysis on the data was performed using Matlab. The velocity statistics for the steady jet were obtained using the well known Reynolds decomposition. However, for the pulsed regime, the velocity statistics were obtained using a triple decomposition of the velocity signal [17, 18].

1. Reynolds Decomposition

The velocity statistics for the steady jet configurations were obtained using the Reynolds decomposition of the velocity signal shown in equation (1), where \(u(x,r)\) represents the measured velocity at axial location \(x\), and radial location \(r\). \(U(x,r)\) is the local mean of the velocity signal, and \(u'(x,r)\) is the fluctuating part of the velocity component. Furthermore, the turbulent part of the velocity signal can be extracted rearranging equation (1), to obtain equation (2). Using this relation, the turbulent statistics can be computed at each position \((x,r)\) over the entire data range, \(N\), using the equations shown in table 2, where \(N\) is the number of vector fields. Finally, the time between vector fields corresponds to \(1/f\), where \(f\) is the acquisition frequency.

\[
u(x,r) = U(x,r) + u'(x,r) \tag{1}
\]
Table 2 Turbulent quantities equations used for steady jets

<table>
<thead>
<tr>
<th>Statistic Type</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity Fluctuations</td>
<td>(U'{\text{rms}(x,r)} = \sqrt{\frac{1}{N} \sum{i=1}^{N} (u_i (x,r) - U(x,r))^2})</td>
</tr>
<tr>
<td>Mean TKE</td>
<td>(K(x,r) = \frac{1}{N} \sum_{i=1}^{N} (u_i (x,r) - U(x,r))^2 + (v_i (x,r) - V(x,r))^2)</td>
</tr>
<tr>
<td>Reynolds Shear Stress</td>
<td>(U'V'(x,r) = \frac{1}{N} \sum_{i=1}^{N} (u_i (x,r) - U(x,r))(v_i (x,r) - V(x,r)))</td>
</tr>
</tbody>
</table>

\[u'_i (x,r) = u(x,r) - U(x,r) \] \hspace{2cm} (2)

2. **Triple Decomposition**

The velocity signal of the pulsed jets was decomposed using a triple decomposition [18, 19] shown in equation (3), where \(u(x,r)_t \) is the instantaneous or measured velocity, \(U(x,r) \) is the time-averaged velocity over all the cycles, \(\tilde{U}(x,r)_t \) is the phase-locked averaged velocity, measured from \(U(x,r) \), and finally, \(u'_i (x,r)_t \) is the turbulent or fluctuating component. In addition, \(x \) and \(r \), represent the axial and radial locations where the velocity signal is extracted, at time \(t \). In order to reduce computation time, the time-averaged velocity \(U(x,r) \) was combined with the phase-locked average velocity \(\tilde{U}(x,r)_t \) resulting in \(\tilde{U}(x,r)_t \). Equation (3) can be rewritten, as shown in equation (4), which represents a dual decomposition of the velocity signal. Finally, the turbulent component of the velocity signal can be extracted using equation (5). This process is shown graphically in Figure 2. Therefore, \(u'_i (x,r)_t \) represents the turbulent part of the velocity signal at time \(t \) of the cycle but with the cyclic component removed. The relations used in order to calculate the turbulent quantities for pulsed jets are shown in table 3, where \(N \) is the total number of velocity fields and \(t_i \) represents the...
<table>
<thead>
<tr>
<th>Statistic Type</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity Fluctuations</td>
<td>[U'{rms(x,r)} = \sqrt{\frac{1}{N} \sum{i=1}^{N} (u_i(x,r){t_i} - \bar{U}(x,r){t_i})^2}]</td>
</tr>
<tr>
<td>Triple Correlations</td>
<td>[U'^2_{(x,r)} = \frac{1}{N} \sum_{i=1}^{N} (u_i(x,r){t_i} - \bar{U}(x,r){t_i})^2]</td>
</tr>
<tr>
<td>Mean TKE</td>
<td>[K_{(x,r)} = \frac{1}{N} \sum_{i=1}^{N} (u_i(x,r){t_i} - \bar{U}(x,r){t_i})^2 + (v_i(x,r){t_i} - \bar{V}(x,r){t_i})^2]</td>
</tr>
<tr>
<td>Reynolds Shear Stress</td>
<td>[U'V'(x,r) = \frac{1}{N} \sum_{i=1}^{N} (u_i(x,r){t_i} - \bar{U}(x,r){t_i})(v_i(x,r){t_i} - \bar{V}(x,r){t_i})]</td>
</tr>
</tbody>
</table>

Table 3 Turbulent quantities equations used for pulsed jets

time in the cycle that corresponds to a given value of \(N \).

\[
\begin{align*}
 u(x,r)_t &= U(x,r) + \bar{U}(x,r)_t + u'(x,r)_t \\
 u(x,r)_t &= \bar{U}(x,r)_t + u'(x,r)_t \\
 u'(x,r)_t &= \bar{U}(x,r)_t - u(x,r)_t
\end{align*}
\] (3-5)

D. Test Conditions

The primary aim of the current work is to examine the effect of the Reynolds number on the flow field of turbulent pulsating impinging jets. All the other parameters that affect the flow field of pulsating jets were kept constant (\(St = 0.25, H/d = 3, \) and \(d = 30.5mm \)). A detailed summary of the test conditions is given in table 4.
Fig. 2 Decomposition of the velocity signal (whole-field) where the local reference frame datum is located at nozzle exit and the jet centerline (i.e. $x/d = 0$ and $r/d = 0$). Only the left-hand side of the jet is shown.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Temperatures (°C)</th>
<th>Acquisition Information</th>
<th>Exit Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re, H/d, St</td>
<td>T_1, T_2, T_{avg}</td>
<td>$Freq. (Hz)$, No. Fields</td>
<td>U_{min}, U_{max}, U_e, A_N</td>
</tr>
<tr>
<td>3900 3 -</td>
<td>19.00 20.00 20.20 20.10</td>
<td>250 3066</td>
<td>- 0.128 -</td>
</tr>
<tr>
<td>6290 3 -</td>
<td>19.00 20.10 20.40 20.25</td>
<td>250 3066</td>
<td>- 0.205 -</td>
</tr>
<tr>
<td>9200 3 -</td>
<td>21.00 21.40 21.60 21.50</td>
<td>500 3066</td>
<td>- 0.291 -</td>
</tr>
<tr>
<td>10120 3 -</td>
<td>19.00 20.50 20.60 20.55</td>
<td>500 3066</td>
<td>- 0.330 -</td>
</tr>
<tr>
<td>4730 3 0.25</td>
<td>18.10 19.00 20.30 20.10</td>
<td>125 6825</td>
<td>0.120 0.204 0.155 20%</td>
</tr>
<tr>
<td>6000 3 0.25</td>
<td>20.10 23.00 25.50 24.25</td>
<td>250 6498</td>
<td>0.152 0.345 0.178 25%</td>
</tr>
<tr>
<td>7820 3 0.25</td>
<td>17.10 16.10 16.90 16.50</td>
<td>250 8520</td>
<td>0.190 0.397 0.2817 25%</td>
</tr>
<tr>
<td>10000 3 0.25</td>
<td>17.90 18.60 19.30 18.95</td>
<td>500 13284</td>
<td>0.223 0.502 0.3364 30%</td>
</tr>
</tbody>
</table>

Table 4 Test conditions summary (velocities in m/s)

E. Flow Characterization

A round nozzle was used in order to provide an axisymmetric jet flow with the flow demonstrating a good symmetry apart from at low Reynolds numbers ($Re < 5,000$) where there was a slight break in symmetry near the impinging wall for $0.6 < r/d < 1.4$, with a maximum deviation of approximately 18%. This break in symmetry is attributed to laser light reflections present in the near wall region on the left-hand side of the field-of-view which impaired the calculation of the velocity vectors.

The experimental rig was designed to generate impinging jets with a fully developed exit velocity profile ($1/7^{th}$ power-law velocity distribution). For the steady flow regime, the velocity profiles at exit were fully developed for Reynolds numbers greater than 3,250. However, for the pulsed flow regime, the exit velocity profiles were only fully developed for Reynolds numbers greater than 3,500.
Finally, figure 3 has been included in order to provide an overview of the energy content in the spectral domain.

![Power Spectral Density](image)

Fig. 3 Power spectral density for the lowest and highest Reynolds number pulsed jets tested. The power density was calculated at \(x/d = 0.1\) and \(r/d = 0\).

III. Results and Discussion

A. General Characteristics of Impinging Jet Flows

The flow of submerged jets impinging on a flat surface is not only important because of its industrial applications but also due to the various flow features it exhibits i.e. free shear layer, wall jets, coherent structures, etc, which are of interest in the study of turbulence. Impinging jet flows can also offer insights for the development of prediction codes and turbulence models. In this section, the main flow regions of a typical jet impinging on a flat plate are introduced (as this information can serve as the basis for characterizing the base flow) and it will also facilitate the comparison of results for the steady and unsteady impinging jets presented in this paper.

The flow of an impinging jet is typically characterized by three distinct regions: (i) the potential region, (ii) the impinging, decaying or decelerating region, and (iii) the wall jet region. The flow characteristics on each of these regions is clearly distinct from each other.

Firstly, the potential region, if it exists, is developed as the jet exits the nozzle. This region is characterized by very low levels of vorticity (unless the jet is swirling). The velocity profiles in this region are mainly dictated by the nozzle from which the jet is issued. In the case of a round nozzle,
the flow develops into a parabolic velocity profile. One of the main characteristic of the potential region is that the initial or exit velocity of the flow is preserved. As the flow travels downstream (i.e. away from the nozzle exit), the cross-sectional area of the potential region reduces, the jet widens and the axial velocity profile flattens. These effects are a manifestation of the viscous diffusion of momentum. The shear layer forms as a result of the usually large velocity gradient between the jet and the surrounding fluid. In the case of a steady round jet the shear layer is stable at low Reynolds numbers, and as the Reynolds number is increased, the shear layer begins to destabilize in the form of Kelvin-Helmholtz instabilities. As the Reynolds number is further increased, these instabilities break down into turbulent eddies (Fig. 4). When the jet is pulsed, this pulsation (at sufficiently large amplitudes) leads to the formation of a vortex ring which dominates the flow features within the shear layer. The characteristics of these toroidal structures are dictated by the jet configuration.
(Reynolds number, Strouhal number, nozzle, etc.). The strength of these vortices (based on their vorticity) is known to increase as both the Reynolds number and the Strouhal number are increased (Fig4).

As the flow approaches the impingement surface, the impinging region is generated and is characterized by a reduction in axial velocity, which continues to decelerate until the flow reaches the surface and the stagnation region is formed. This flow deceleration in the axial direction is accompanied with an increase in mass and momentum transfer to the impinging surface. At the stagnation point, there is a local increase in pressure which forces the flow radially outwards leading to the formation of the third flow region, namely, the wall jet region where mass and momentum transfer are also significant. At the boundary where the flow begins to turn, the shear layer is forced radially, and in steady jets with sufficiently large Reynolds numbers this results in a distortion of turbulent eddies which is believed to be another mechanism by which heat and mass transfer at the wall can be enhanced [20]. For pulsed jets with well defined coherent structures within the shear layer, the turbulence characteristics, and hence the heat and mass transfer behavior within the wall jet, is known to be strongly dominated by the upstream features of the coherent structures [21] and their interaction with the impingement surface as they are displaced radially outwards until they eventually dissipate. In the following sections, those upstream features will be investigated and reported. This work will focus on the flow and turbulent characteristics within the potential and decelerating regions, but some information concerning this wall jet region will also be presented.

B. Time-Averaged Flow Field

Figure 5 exemplifies some of the flow features of the potential and decelerating flow regions described in the previous section. The mean axial velocity profile at the jet centerline for the steady and pulsating jets considered in this work are shown. At a first glance, it is noticed that the potential region for these jets extends up to \(x/d \approx 2 \). However, at approximately \(x/d > 2 \) the presence of the impingement surface results in a deceleration of the flow in the axial direction. In the axial range \(0 < x/d < 2 \), all pulsed jets exhibit an increase in axial velocity. Furthermore, this increase in centerline velocity becomes more pronounced as the Reynolds number is increased, with the jet
at $Re = 10000$ reaching a maximum velocity of $U/U_0 = 1.07$ at $x/d \approx 1.19$. This localized increase in axial velocity is attributed to a back pressure at the rotating valve due to water hammer effects. A closer evaluation of Figure 5 shows that for the steady jets, there is no significant deceleration of the jet centreline velocity up to $x/d = 2$. In contrast, for the pulsating jets, an earlier decline in the jet centreline velocity is observed at $x/d = 1.5$ following on from the initial acceleration. This decay in centerline axial velocity component becomes evident for $Re = 7820$ and $Re = 10000$ (Fig. 5b), indicating that the presence of the pulse shortens the core of the jet as the Reynolds number is increased from $Re = 6000$ to $Re = 7820$. However, for steady jets, the Reynolds number does not have a significant effect on the rate of centerline velocity decay at least for the range of Reynolds numbers tested (i.e. $3900 < Re < 10000$).

The effect of the Reynolds number on the development of the axial and radial velocity components is shown in figure 6. The Reynolds number does not have a strong influence on the development of the axial velocity component. However, the development of the radial velocity, V/U_0, component is influenced by Reynolds number (Fig. 6b). For pulsed jets, the lateral acceleration rate of the jet is increased as the jet approaches the impingement region. This is a consequence of an increase in the local pressure near the impingement surface which forces the jet to accelerate in the radial direction and the vortex ring is displaced radially away from the jet centerline and stagnation region. However, this effect of the Reynolds number is moderate within the range considered in this work.
Fig. 6 Radial profiles of the mean axial (left) and radial (left) velocity components; closed symbols - steady jet, open symbols pulsed jet ($H/d = 3, St = 0.25$). For legend see Fig. 5.
and it is also marginally more pronounced for pulsed jets. Interestingly, it can be noticed that the presence of a pulsation leads to a widening of the axial velocity profiles as the Reynolds number is increased as evidenced by Figure 7 which also shows a significant increase in the jet half-width (15% or greater) for \(Re = 10000 \) when compared to steady jets. This increase in the spreading, or widening, of the jet axial velocity profiles towards the end of the potential region and with the impinging region is attributed to increased momentum diffusion through molecular viscosity experienced by the vortex rings as they are shed from the nozzle exit and approach the impingement region where the vortex pair shows an increase in size and stretches as seen, for example, in figure 4b where the vorticity of the pulsed jets shows the vortex as it approaches the impinging wall (the vorticity surface map shows that the vortical structure grows in size as it travels from the nozzle exit towards the impinging surface).

Interestingly, the most significant influence of the Reynolds number on pulsed jets is found near the impinging wall. Firstly, the presence of a pulsation leads to higher values of the radial velocity component at \(r/d > 1.5 \) for all jets in comparison to their steady counterpart. This increase in the radial velocity component near the wall for \(r/d > 1.5 \) develops as the vortex ring is displaced radially away from the jet centerline and its angular momentum energizes the wall jet. Furthermore, the magnitude of the local maximum is not proportional to the Reynolds number, for instance, the jet with \(Re = 4730 \) exhibits a local maximum larger than the jet with \(Re = 7820 \), however, it increases
for $Re = 10000$, leading to the largest value of V/U_0. This behavior is a consequence of significant
differences to the magnitude of the dimensionless vorticity between vortex rings due to the influence
of the Reynolds number. For instance, as the Reynolds number is increased, the vorticity within
the vortex rings increases, as shown in Fig. 13 on page 28. Therefore, the Reynolds number affects
the magnitude of the vorticity within the vortex ring as it reaches the impingement wall which
influences its interaction with the impingement surface (Fig. 13 on page 28). For example, for
$Re = 4730$ the vortex is weak (lower vorticity) and does not penetrate the jet wall jet, however,
for $Re = 7820$, the vortex penetrates the wall jet. Interestingly, as the Reynolds number is further
increased to $Re = 10000$, its vortex is moved away from the wall, as it is forced away by the fluid
within the jet core which exhibited a widening of the axial velocity profiles as the Reynolds number
is increased (Fig. 6b and Fig. 7). This suggests that axial momentum is forced radially leading
to the development of a stronger wall jet which prevents the vortex from penetrating the wall as
deeply as the jet with $Re = 7820$. Finally, the presence of the pulsation fixes the location of the
maximum radial velocity component near the wall at approximately $r/d = 0.75$, independently of
the Reynolds number, at least for the values of Re tested. This result suggests that the pulsation
has the effect of both controlling the development of the shear layer and fixing the radial location
where the vortex ring impinges on the surface when $St = 0.25$. This observation deserves further
study as it cannot be generalized unless additional upstream conditions such as the effect of varying
the pulsating frequency or Strouhal number are investigated.

C. Velocity Fluctuations

Figure 8 shows that, overall, as the Reynolds number is increased, the non-dimensional axial
velocity fluctuations decrease. A similar reduction was also encountered in turbulent pulsating jets
as the Strouhal number increased [22]. This reduction was due to increased vorticity which helped
reduce the turbulent part of the axial velocity component. For the current study, not only does
vorticity within the vortex ring increases as the Reynolds number is increased, but the exit velocity
also increases, inducing a more pronounced reduction of U'_{rms}/U_0. Similarly, the radial velocity
fluctuations (Fig. 8 - right) also decrease as Re is increased, although this decrease is moderate.
Fig. 8 Radial profiles of the mean axial (left) and radial (left) velocity fluctuations; closed symbols - steady jet, open symbols pulsed jet ($H/d = 3$, $St = 0.25$). For legend see Fig. 9.
Figure 8 shows that near the nozzle exit (Fig. 8d) the profiles of the axial velocity fluctuations for pulsed jets exhibit higher peak values within the jet mixing layer. This increase is linked to the periodic regeneration of the shear layer as a new cycle starts. Similarly, the velocity fluctuations in the radial direction (Fig. 8d - right) show increased values of V_{rms}'/U_0 within the shear layer for pulsed jets. Further downstream, at $x/d = 2.5$ (Fig. 8b), the profiles for pulsed jets show an increase of U_{rms}'/U_0 for $0 < r/d < 0.25$ and the Reynolds number has a moderate influence on U_{rms}'/U_0 at $0.2 < r/d < 0.6$, leading to a decrease in the axial velocity fluctuations when Re increases. Furthermore, it is near the impinging wall that the effects of the Reynolds number are most significant, as shown in Fig. 8a. It shows that as the Reynolds number is increased, there is a decrease in the values of U_{rms}'/U_0. It also shows an increase of U_{rms}'/U_0 in comparison to steady jets within the stagnation region ($0 < r/d < 0.3$) as a result of the breakdown of coherent structures near the stagnation region which also explains the reduction in the values of U_{rms}'/U_0 with increasing the Reynolds number (increased vorticity within the vortex pair near the wall).

Fig. 8a (right) shows radial profiles of the radial velocity fluctuations near the wall. It can be observed that for $r/d > 1$ the effect of the Reynolds number on V_{rms}'/U_0 is similar to that of steady jets; that is, it reduces the value of V_{rms}'/U_0. However, for steady jets, this is noticeable from $r/d > 0.5$. This indicates that the presence of the pulse delays the effect of the Reynolds
number on V'_{rms}/U_0 to $r/d > 0.75$. This reduction in the values of V'/U_0 with increasing the Reynolds number is most marked when Re increases from $Re = 7820$ to $Re = 10000$ (pulsed) and it could be attributed to the development of the wall jet; as the flow impinges on the surface, an area of increased pressure builds up (stagnation region) and as the flow velocity is increased (i.e. $Re = 7820$ to $Re = 10000$), the magnitude of the stagnation pressure residual $(\partial P/\rho \partial x)$ calculated from the mean axial momentum balance near the impingement wall [5] increases from approximately $75N/kg$ to $200N/kg$. The flow is then forced radially and the wall jet is formed. With increasing the Reynolds number and the subsequent increase in pressure in the stagnation region, a favorable pressure gradient is present which stabilizes the wall jet boundary layer due to a localized flow acceleration, which increases as the Reynolds number is increased. In the case of a pulsed jet, this radial acceleration effect is less marked due to magnitude reductions of the stagnation pressure residual $(\partial P/\rho \partial x)$ of up to 78% when compared to steady jets. This reduction in the stagnation pressure could be a result of the loss of upstream axial momentum to viscosity. It has already been shown (Fig. 6 and Fig. 5) that the potential core of pulsed jets is shorter than that of steady jets. This behavior could contribute to the reduction in stagnation point heat transfer rates often reported in the literature [6] for pulsed or pulsating jets.

Figure 9 shows that there is a steady increase of the centerline velocity fluctuations at $1.25 < x/d < 2.4$ for pulsed jets, up to $r/d \approx 2.4$, where pulsed jets reach higher values of U'_{rms}/U_0 than steady jets. In addition, for pulsed jets, the centerline axial velocity fluctuations near the stagnation point decrease as the Reynolds number is increased. This reduction is also observed in the steady jets tested, however, it is more pronounced on pulsed jets. Figure 9 also shows that for approximately $x/d < 0.5$ pulsed jets exhibit increased levels of U'_{rms}/U_0 which has been attributed to the cyclic nature of the flow.

D. Turbulent Kinetic Energy

Figure 10 shows that, overall, as the Reynolds number is increased, the mean turbulent kinetic energy (TKE) decreases, particularly within the shear layer of the jet (at $1 < x/d < 2.5$). This effect is due to the decrease of the axial and radial velocity fluctuations as Re is increased as a result of
increased vorticity within the vortex ring (Fig. 4b and Fig. 13) which suggests that at higher values of Re the vortex ring is capable of preserving angular momentum more effectively, thus, preventing an early breakdown of the vortex pairs and it manifests as a reduction in the values of K/U_0^2 until, eventually, the vortex ring is close to the impingement plate where angular momentum dissipates and increased turbulent kinetic energy is observed. Interestingly, the TKE within the mixing layer of pulsed jets exhibits increased levels of turbulent kinetic energy when compared to steady jets showing that the coherent structures carry a large proportion of the turbulent kinetic energy which is contained within the mixing layer. This energy is then released onto the impingement surface. This behavior suggests that, given an appropriate understanding of the factors influencing this mechanism (e.g. Strouhal number, nozzle-to-plate-spacing, etc.), pulsed jets have great potential.
The effect of Re near the impinging wall is explored in Fig. 11. For steady jets at $0.6 < r/d < 1.5$, increasing the Reynolds number results in a decrease of the mean turbulent kinetic energy. However, there is not a clear correlation for pulsed jets at $0.6 < r/d < 1.5$, although there is a steady increase of the mean TKE for $r/d > 0.9$, whereas, for steady jets, this increase is not evident up to approximately $r/d > 1.5$. Finally, for $Re = 7820$ there is an increase in the values of K/U_0^2 for approximately $0.4 < r/d < 0.9$ when compared to the other jets. This local increase is influenced by the higher values of the radial velocity fluctuations also present at $0.4 < r/d < 0.9$ (Fig. 8 on page 19). The increase in the values of V'_{rms}/U_0 for this region is a result of vortex distortion near the impingement plate, as can be seen in Fig. 13 where the phase-averaged vorticity field for $Re = 7820$ shows a deformation of the vortex core (compared with $Re = 10000$ in Fig. 13 where the vortex ring has retained its upstream shape) combined with the fact that the jet vortex exhibits higher vorticity near the wall and, therefore, has a more pronounced effect on the development of the wall jet.
E. Reynolds Shear Stress

It has already been established that the presence of a pulsing frequency has significant effects on the flow of impinging jets. Additionally, the Reynolds number has been seen to influence the flow field and the turbulent characteristics of impinging jets, noticeably, the presence of a pulsating frequency has been shown to affect the development of the jet’s mixing layer, in general, leading to a thicker shear layer with flattened radial profiles when compared to impinging jets without a pulsing frequency. In this section we will briefly discuss the effect that the Reynolds number and the presence of a pulsing frequency have on the turbulent stresses. Figure 12 shows radial profiles of the axial, normal and shear stresses estimated in the within the two-dimensional field of view available. The main motivation to include these profiles is to provide high-quality and detailed estimations of the distribution of the Reynolds stresses for pulsating jet flows. The Reynolds stresses are, perhaps, one of the most desirable turbulent quantities to investigate. The distribution of the Reynolds stresses can provide information on the effects that turbulence has of many flows since they are considered as one of the most influential mechanisms for the transport of turbulent momentum. It is not surprising to find that many analytical and numerical tools are based on or rely on the modeling and/or mimicking the effect that small scale velocity fluctuations have on the mean flow, and indeed the instantaneous flow field. Furthermore, these small scales (in comparison with the mean flow scales) can also have a marked effect on the transport of passive scalars and can, therefore, significantly affect heat transfer [23]. In this work, every possible effort was made to systematically present the turbulent characteristics of pulsating impinging jets and provide detailed experimental data that can be used in support of numerical and/or theoretical investigations.
Fig. 12 Radial profiles of the axial normal stress (left), the radial normal stress (center) and the shear stress (right); closed symbols - steady jet, open symbols pulsed jet ($H/d = 3$, $St = 0.25$). For legend see Fig. 11
In Fig. 12, the left column depicts the distribution of the radial profiles of the axial normal stress. As expected from the discussion in section 4, it is reasonable to foresee peaks in the axial normal stress concentrating towards the mixing layer since within this layer there is a net momentum transfer from the issuing jet to the surrounding fluid. Furthermore, considering that so far the distributions of turbulent quantities for pulsed jets have followed a similar profile to those of steady jets, it is not surprising to observed a similar pattern emerging. That is, overall, the distribution of turbulent quantities for pulsating jets have a tendency to exhibit flatter distributions within the shear layer of the jet with similar magnitudes magnitudes to those generated by steady jets, particularly for $1 < x/d < 2.5$. However, figure 12d (left) shows that near the nozzle exit the normal stress in the axial direction for pulsed jets show significantly higher peak values. This result can be expected since it has already been shown that pulsed jet had wider exit velocity profiles, therefore, suggesting an increased of momentum diffusion in the axial direction which is reflected in the distribution of the normal stresses near the nozzle exit. Similarly, overall the profiles of the radial normal stress for pulsed jets exhibit significantly larger peaks than those observed for steady jets. These results imply that there is an increased turbulent momentum transfer in the radial direction for pulsed jets (Fig. 12). This momentum exchange is controlled and dominated by the large coherent structures emanating from the nozzle exit. Also, near the nozzle exit the radial velocity maxima generally increase with increasing the Reynolds number.

F. Unsteady Vorticity and Shear Stress

Figure 13 shows the phase-locked vorticity fields at various phase angles within a pulsing cycle. This figure shows that the Reynolds number has a significant effect on the vorticity field of an impinging pulsed jet. The most noticeable effect is that as the Reynolds number is increased the vorticity within the vortex ring also increases (Fig. 13 on page 28). This figure also shows a basic characteristic of the flow of impinging toroidal structures. They emanate from the nozzle with a given ‘strength’ or characteristic vorticity and are carried towards the impinging surface by the jet’s momentum. As they travel towards the wall they experience viscous diffusion and, as a result, they loose rotational strength, they grow in size (similar to the spread of a free jet due to viscous loss.
of momentum), they diffuse until eventually they dissipate into small scale turbulent structures. Interestingly, Fig. 13 shows that the eventual dissipation of these toroidal structures is strongly influence by the Reynolds number. As the Reynolds number is increased, the vortex ring exhibits larger upstream vorticity as it develops (Fig. 13 on the next page) and can, therefore, ‘survive’ or preserve its rotational motion and travel larger distances before it also eventually dissipates. As a result, the vortex distribution near the impinging surface is noticeably affected by the Reynolds number which could explain the uncorrelated distributions of U'_{rms}/U_0 at the jet centreline near the impingement wall seen in figure 9 on page 20.

Finally, the unsteady (phase-locked) development of the shear stress of three pulsating impinging jets ($Re = 4730$, $Re = 7820$ and $Re = 10000$) is shown in Fig. 14. The phase-locked temporal flow fields presented in Fig. 14 were estimated by first computing the phase-locked (or averaged) velocity over a number of samples. A minimum of 40 cycles was used for $Re = 4730$ and a maximum of 80 cycles when $Re = 10000$. The number of samples is not large enough to provide a very smooth shear stress field, however, by first referring to the vorticity field (Fig. 13) some general observations about the flow, as well as the spatial development of the shear stress can be made. The reader is informed that these two plots (Fig. 13 and Fig. 14) have been prepared in such a way that if superimposed the phase angle and Reynolds number of each figure will be identical. For instance, Figure 13c (right) shows that at phase angle 25° and a jet Reynolds number of 10000 there is a distorted vortex near the impingement surface at approximately $r/d = 1$. By evaluating the same plot in Fig. 14c it is possible to observe that near the impingement wall at approximately $r/d = 1$ there is a large region of negative values of $U'V'/U_0^2$. Now considering that our reference frame has its origin at the nozzle exit and it is positive pointing towards the impingement wall, with the x-axis being positive from left to right, it is possible to deduce that in order for the product $U'V'$ to be negative, there are two possibilities (i) $U' > 0$ and $V' < 0$ or (ii) $U' < 0$ and $V' > 0$. This implies that at this location there is an interchange of turbulent momentum from the vortex as it travels along the impinging surface with a ‘directionality’ that is either (i) pointing to the wall and the jet centerline or (ii) away from the impinging surface and the jet centerline. Wallace [24] identified these turbulent momentum transfer interaction as (i) low speed wall-directed interaction and (ii) high-
Fig. 13 Phased-averaged dimensionless vorticity at various phase angles: 105°, 195°, 275° and 25° (from left to right). All figures show the dimensionless vorticity (ω_d/U^{-1}) and share the same colormap (shown at the top right).

speed outwards interactions. Figure 14b and Figure14a also show that these turbulent momentum exchange interactions between the vortex ring and the wall are influenced by the Reynolds number. As the Reynolds number is increased, the relative strength of these interactions increased and they also move closer to the wall. These results certainly would seem to support the possibility of employing pulsating impinging jets in applications where it is desirable to control this turbulent
momentum transfer interaction.

Fig. 14 Phased-averaged dimensionless Reynolds shear stress at various phase angles: 105°, 195°, 275° and 25° (from left to right). All figures show the dimensionless shear stress $U'V'/U_0^2$ and share the same colormap (shown at the top right)

IV. Conclusion

The Reynolds number has a significant effect on the flow field of impinging jets. First of all, for pulsed jets, the jet core shortens and the centerline axial velocity component declines more rapidly. Also, as the Reynolds number increases the jet radial velocities within the wall jet increase. This
is the case for both pulsed and steady jets. However, this effect is more pronounced for steady jets. Additionally, the presence of a pulsation leads to a widening of the axial velocity profiles in comparison to steady jets. Finally, the presence of the pulsation leads to higher values of the radial velocity component for $r/d > 0.75$ for all the values of the Reynolds number tested in comparison to the steady cases. However, the results also indicate that the magnitude of the radial velocity near the impingement wall is not in direct relation to the value of the Reynolds number and deserves further consideration.

For pulsed jets, the Reynolds number affects upstream vorticity within the vortex ring and its interaction with the impinging surface. This interaction is not linear with respect to the Reynolds number. For instance, for $Re = 10000$ the vortex is moved away from the wall, as it is forced away from the wall by the larger exist velocity and subsequent increase in mass flow within the jet core. Therefore, the vortex ring moves radially sooner and more rapidly. This generates a stronger wall jet which prevents the vortex from penetrating the wall jet as deeply as the jet with $Re = 7,820$. This behavior deserves further study. Finally, an interesting observation is that the presence of a pulse has the effect to fix the location of the maximum radial velocity component near the impinging wall at approximately $r/d = 0.75$. This behavior is independent of the Reynolds number, at least for the values tested.

Increasing the Reynolds number generally decreases the non-dimensional turbulent fluctuations U'_{rms}/U_0 and V'_{rms}/U_0. However, the centerline axial velocity fluctuations steadily increase at $1.25 < x/d < 2.4$ for pulsed jets, up to $x/d = 2.4$ where pulsed jets develop higher values of U'_{rms}/U_0. This trend is also seen for the mean turbulent kinetic energy. This increase in both quantities could explain the reduction in heat transfer rates at the stagnation point observed in the literature for pulsed jets. This increase suggests an increase in turbulent mixing, leading to the loss of the jet’s original properties to the surrounding fluid. However, the results also show a decrease in turbulent mixing for $0.2 < r/d < 0.6$, corresponding to the wider shear layer seen in pulsed jets. This reduction in U'_{rms}/U_0 within the shear layer, combined with the increase in radial velocity and turbulent kinetic energy near the impinging wall, could also explain the heat transfer enhancement observed for pulsed jets away from the stagnation region. This notion is strengthened further by
the development of a turbulent momentum exchange away from the impinging wall for $r/d > 1.5$

as the Reynolds number is increased. Our investigation also supports the potential use of pulsating
impinging jets in applications where there is a need to have control over the turbulent momentum
exchange between the jet flow and a flat surface.

References

submerged jets of large Prandtl number liquid - I. Unconfined circular jets," *International journal of

pp. 193-201.

pp. 106-115.

pp. 574-580.

[8] Tesar, V., "Enhancing impinging jet heat or mass transfer by fluidically generated flow pulsation."

31

